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A drop of fluid, initially held spherical by surface tension, will deform when an 
electric or magnetic field is applied. The deformation will depend on the electric/ 
magnetic properties (permittivity/permeability and conductivity) of the drop and of 
the surrounding fluid. The full time-dependent low-Reynolds-number problem for 
the drop deformation is studied by means of a numerical boundary-integral 
technique. Fluids with arbitrary electrical properties are considered, but the 
viscosities of the drop and of the surrounding fluid are assumed to be equal. 

Two modes of breakup have been observed experimentally : (i) tip-streaming from 
drops with pointed ends, and (ii) division of the drop into two blobs connected by a 
thin thread. Pointed ends are predicted by the numerical scheme when the 
permittivity of the drop is high compared with that of the surrounding fluid. Division 
into blobs is predicted when the conductivity of the drop is higher than that of the 
surrounding fluid. Some experiments have been reported in which the drop 
deformation exhibits hysteresis. This behaviour has not in general been reproduced in 
the numerical simulations, suggesting that the viscosity ratio of the two fluids can 
play an important role. 

1. Introduction 
The deformation of fluid interfaces under an applied field is a classical problem, 

and has been studied by many authors. Applications include the breakup of rain 
drops in thunderstorms, electrohydrodynamic atomization, the behaviour of jets and 
drops in ink-jets plotters, and the breakdown of insulating liquids via the deformation 
of impurities (e.g. water droplets) too small to be eliminated. A thorough review of 
electrohydrodynamics is given by Melcher (1963, 1981). 

In  this paper we shall study the deformation and breakup of a drop of fluid. At 
least two modes of breakup are observed experimentally. Conical points may be 
formed in the surface of the drop (Wilson & Taylor 1925; Mackay 1931 ; Allan & 
Mason 1962; Garton & Krasucki 1984; Taylor 1964). A fluid jet, or a series of 
droplets, or a fine mist, is then ejected from the tip of the cone. This conical 
instability is observed in other geometries, e.g. the instability of a horizontal plane 
surface (Taylor & McEwan, 1965), or electrohydrodynamic atomization from a 
capillary (reviewed by Kozhenkov & Fuks 1976). It is therefore not surprising that 
the numerical simulations to be presented in $3 will sometimes produce conical 
interfaces. However, we have not been able to follow the subsequent ejection of 
droplets from the tip of the cone. 

Drop breakup can also occur via other mechanisms. Torza, Cox & Mason (1971) 
show photographs of drops which divide into two blobs connected by a thin thread. 
We shall later show that such behaviour can be expected when the fluids have non- 
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FIGURE 1. The drop of fluid 1 surrounded by fluid 2 .  

zero conductivities. Under these circumstances charge will build up  at the Auid 
interface, on which tangential stresses will act. A drop will therefore deform, but even 
when equilibrium has been reached the fluid outside and within the drop will 
circulate because of the electric stresses (Taylor 1966). This topic is reviewed by 
Melcher & Taylor (1969). 

The equivalent magnetic experiments can be performed in ferrofluids. Thus drop 
deformation has been studied by Arkhipenko, Barkov & Bashtovoi (1978), and by 
Drozdova, Skrobotova & Chekanov (19791, while sharp conical spikes can also occur, 
e.g. when a magnetic field is applied normal to a plane interface (Cowley & 
Rosensweig 1967). We shall consider, in particular, the experiments of Bacri, Salin 
& Massart (1982), and of Bacri & Salin (1982, 1983), on ferrofluid drop deformation. 
When the magnetic field was increased and subsequently reduced, hysteresis in the 
deformation of the drop was observed. We shall discuss these results when reviewing 
energy arguments which have been used to predict the drop shape. However, we 
must first introduce the notation that we require, and thus we now state the problem 
that we address in the rest of this paper. 

1 , l .  The problem to be studied 

We shall study the deformation of a drop of fluid 1 surrounded by fluid 2, under the 
influence of an electric field E (or magnetic field B )  applied parallel to the z-axis 
(figure 1). We assume that the densities pi (i = 1,2)  of the two fluids are identical, and 
equal to p * ;  henceforth we neglect gravity. We shall also assume that the fluid 
viscosities are equal: ,@ = p* (i = 1,2), since the effect of the viscosity ratio merits a 
study in itself. In the absence of an applied field, interfacial tension (coefficient y )  will 
hold the drop spherical with radius a. If the electrical properties of the two fluids are 
not identical, then when an electric field is applied there will be a jump in the electric 
stress at the interface. The drop will therefore deform. When the fluids are perfect 
insulators, the drop deformation will depend on the ratio eoE2a/y of the electric stress 
to interfacial tension (eO is the permittivity of free space, eOei the permittivity of fluid 
i), and on the ratio of the dielectric constants K = e1/e2 of the two fluids. If the fluids 
are conductors, their conductivities ci will also be important. In  the magnetic 
problem the permeabilities pi of the two fluids play a role entirely analogous to that 
of the permittivities, and there is no equivalent to the conductivities. We shall 
therefore fix our attention upon the more general electric problem. Nevertheless, it 
should be remembered that the magnetic problem has experimental advantages. If the 
drop acquires a net charge, electrophoresis will occur in an electric field, but not in 
a magnetic field. 
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FIGURE 2. The aspect ratio l / b  as a function of the field strength c0 e2 E2ay-', as given by minimizing 
the energy of a spheroid. Permittivity ratios c1/e2 = (a) 5.0; ( b )  10.0; (c) 20.8; ( d )  50; ( e )  250; (f) 
1000. 

1.2. Minimum-energy arguments for  the drop shape 
Techniques for making ferrofluids are sufficiently developed that fluids can be 
designed to separate into two phases. Drops of the concentrated phase, with high 
permeability, are immersed in the phase with lower permeability. When no magnetic 
field is applied, the drops are spherical, indicating an effective interfacial tension. 
Bacri & Salin (1982, 1983) performed experiments which they analysed by means of 
energy arguments (O'Konski & Thacher 1953; Garton & Krasucki 1964). We shall 
need their results, so we briefly repeat the analysis, using electrical notation and SI 
units. 

To obtain analytic results, we assume that the drop takes the form of a prolate 
spheroid with major and minor axes 21, 2b, aligned with the electric field. This 
approximation has been shown to be good (Garton & Krasucki) as long as the drop 
is not too long, when pointed ends occur ; the results to be presented later support 
this view. The energy of a dielectric body with volume V introduced into an electric 
field E is 

E ,  = +eo 1" (e2 - el) E .  El dw 

where El is the field within V (Stratton 1958, p. 112). The field inside a dielectric 
spheroid can be obtained analytically, and hence the electrical energy E, of the 
spheroid is 
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where l / b  is the aspect ratio of the drop, e = (1 - b 2 / l 2 ) ;  is the eccentricity, and 

A ,  = -  2e-ln- (kP3.  ( z) 
The surface energy of the drop is simply 

E, = 2xy(b2 + Zbe-l sin-, e). 

The drop is then assumed to take the form that minimizes the total energy E ,  + E,. 
Differentiating the above expressions, while holding the volume of the drop 
constant, we obtain the aspect ratio l / b  as a function of the non-dimensionalized 
applied field e,  E2  a / y ,  and the resulting deformation curves are shown in figure 2 for 
a series of permittivity ratios e,/c, .  When cl/e2 < 20.8 the aspect ratio is single- 
valued. For higher values of c1/c2 hysteresis is possible, and this was observed by 
Bacri & Salin. They increased the field strength up to point B (figure 2 ) .  A slight 
increase in the field strength sufficed to substantially increase the drop length (point 
C). The downwards jump DA could also be observed. 

When the aspect ratio 1/b ,> 1, we may perform a slender-body analysis which 
removes the assumption that the drop is spheroidal. However, such an analysis sheds 
no light on the interesting region of field strengths and permittivity ratios in which 
breakup and hysteresis occur. A full numerical scheme was therefore adopted, and is 
discussed in the rest of this paper. 

2. The time-dependent deformation of an arbitrary axisymmetric drop 
We study the deformation of an arbitrary axisymmetric drop in an electric field. 

The problem falls naturally into two parts : that of finding the electric field, and that 
of determining the fluid motion. We resolve both Laplace’s equation for the electric 
field, and Stokes’ equations for the fluid motion, by means of the boundary-integral 
techniques. The electric problem has been studied by these methods by Miksis (1981) 
and by Brazier-Smith (1971). The hydrodynamic problem of flow around a rigid 
particle has been considered by Youngren & Acrivos (1975). Rallison & Acrivos 
(1978) and Rallison (1981) applied the technique to study drop deformation and 
breakup in extensional and general linear flows. B. Duffy & E. J. Hinch (un- 
published) improved the numerical scheme and studied drop deformation in the 
presence of rigid walls. We shall in general adopt the refinements introduced by 
Duffy & Hinch. 

At each time step a solution of Laplace’s equation is obtained in terms of a 
distribution of singularities over the surface of the drop. The jump in the electric 
stress a t  the interface is computed, and this stress, together with interfacial tension, 
causes motion of the fluid. The surface of the drop is represented by a series of points 
which move with the fluid. Their position a t  the end of a time step At is computed, 
and we then re-solve Laplace’s equation ready for the next time step. Eventually 
either (i) equilibrium is reached, or (ii) the drop length increases without bound, or 
(iii) the drop ends become sharp and pointed, followed by breakdown of the 
numerical scheme. If equilibrium is achieved, the applied electric field is increased 
and the process repeated. The choice of small increases in field strength ensures that 
the drop shape is never far from equilibrium. 

The drop is assumed to be axially symmetric, with rounded ends (i.e. the radius of 
curvature of the tip is non-zero). We use cylindrical coordinates ( r , z ) ,  and the drop 
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shape r = R(z) is assumed to be a single-valued function of z. The surface of the drop 
is represented by 2N+ 1 points (Ri, zi), with zZNfl = -zl = 1, where 1 is the half- 
length of the drop. We assume symmetry about the midpoint zNfl = 0. Associated 
with each point is the local surface density of singularities pc. When interpolation is 
required, we assume that pi,  Ri, zi can be expressed as quartic polynomials fitted 
through values a t  i ,  i k 1, i k 2. These interpolations are also used to determine n the 
normal to the surface, and the surface curvature. 

2.1. T h e  electric jield 
We consider the electric field to consist of two parts : the imposed field, and that due 
to the surface distribution of singularities p. The resulting field is computed as 
though in free space, and p,  which we shall regard as a distribution of charge, is then 
picked such that the electric field En normal to the surface satisfies el E: = c2 E; (or, 
when the fluids are conductors, we demand that a,Ef be continuous). 

The potential 9 a t  (r,,x) due to a ring of unit charge density with radius r, a t  y 
is 

Integration of the charge density over the length of the drop yields the potential 
around the drop, and hence the electric field normal to the surface 

E"(x) = 

where r;, = ( Z - ~ ) ~ + ( R , - R , ) ~  

and 4% R, m =  
(X - Y ) ~  + (R, + . 

F(m)  and E(m)  are complete elliptic integrals of the first and second kind respectively, 
and can be rapidly evaluated from polynomial approximation (Abramowitz & 
Stegun 1972). Note that in the above integral for En,  rsy goes through zero as y passes 
through x. All the singularities are integrable : they are subtracted out and handled 
analytically. The net result is the average field i(E7 + E,") due to charges on the surface. 
Brazier-Smith (1971) uses almost the same methods. He keeps the charge slightly 
within fluid 1, and consequently obtains E,". Following Duffy & Hinch the integrals 
are performed by an averaged Simpson rule, the results ofwhich we denote by cgil pi for 
appropriate coefficients g,. To this result we add the imposed uniform field E ,  and the 
total field normal to the interface a t  (R,,z,) is, in the case of dielectric fluids, 

where the right-hand side has been determined by the requirement that €En be 
continuous across the interface. (When the conductivities are non-zero, we require 
uEn continuous, and we merely replace K = cJe2 by al/a2 in the above expression.) 
This set of equations is solved either by Gauss iteration, or by the IMSL routine 
LEQT2F (Gaussian elimination with equilibration, partial pivoting and iterative 
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improvement). Results obtained by the two methods are essentially identical, except 
just before breakup, when Gauss iteration might fail to converge. Computation times 
are similar, and the IMSL routine was generally used. 

Knowing the charge density p, we can determine the tangential electric field 

2.2. The stress tensor 
The discontinuity in electric field and in the permittivity across the interface causes 
a jump in the Maxwell stress tensor 

T~ = E ~ ~ ~ ( E ~ E ~ - ~ ~ ~ , ) E ) ' ) .  

The jump in stress normal to the surface is 

which, for a perfect dielectric, becomes 

ieo ez (1  - K-l)  ( (E;)2 + K(E;)')  

The jump in tangential stress is 

which is zero in the case of a perfect dielectric, and 

when the conductivities are non-zero. 
Note that the Maxwell stress tensor depends on the square of the electric field. 

Reversal of the field will leave our results unchanged. Experimentally, it is found 
that the sign of the applied potential can be important when a very fine mist is 
generated by electrohydrodynamic atomization (Vonnegut & Neubauer 1952). 

To the normal electric stress we must add the jump in stress due to interfacial 
tension 

where R, and R, are the principal radii of curvature of the surface. 

following section. 
These jumps in stress will cause motion of the fluid, which we examine in the 

2.3. The Juid velocities 
We assume that the Reynolds number is sufficiently small for nonlinear inertial 
terms to be negligible, and it should be borne in mind that this assumption may be 
of dubious validity when a jet of fluid is ejected from a sharply pointed drop. We also 
neglect the inertial term p*au/at. This last assumption requires that the viscous 
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diffusion time p*a2/p" be small compared with the time p*a/y required for relaxation 
of the drop shape to  equilibrium, i.e. that  

(For studies of the opposite limit, in which p*V2u < p*Du/Dt, the reader is referred 
to Brazier-Smith, Jennings & Latham 1971.) 

Under the above conditions, the stresses acting on the fluid are at all times in 
equilibrium, and we may use the representation of a general steady Stokes flow in 
terms of single and double layers of fundamental singularities, as discussed by 
Ladyzhenskaya (1969). It is useful to summarize the results, and we follow the 
presentation due to Rallison & Acrivos (1978). Let S be the surface of the drop, 
and 

From the surface-integral representation of the Stokes flow exterior to S (fluid 2) we 
obtain a relation between the velocity u&x) and stress v&(x)  for z , y ~ S :  

where n is the outward normal to the drop. Similarly, from an analysis of the flow 
within the drop, 

The right-hand side of this expression is merely the jump in stress across the 
interface, which is known. When pT = ,uz the term in Kiik vanishes. As explained by 
Rallison & Acrivos (1978) the flow is in this case generated by a membrane of forces 
f i  acting in an infinite homogeneous fluid. We shall restrict ourselves here to this 
simpler case, as we already have to investigate ranges of both the permittivity ratio 

and the conductivity ratio vl/vp. This restriction has the added advantage that 
while we must solve an integral equation for the charge density, the fluid velocities 
can be obtained by direct integration over the surface. Rallison & Acrivos considered 
arbitrary viscosity ratios, so there should in principle be no difficulty in extending 
the analysis to the more general case. 

Since the problem is axisymmetric, the angular integrations can be performed 
analytically to yield 
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where the coefficients Gii are given by Youngren & Acrivos: 

G rr = m-i R;; R;: {[Ri+Rt+2(x-y)2]F(m) 

- [2(x - y)4 + 3(x - y)z ( B i  + l i t)  + (Ri  - r;;E(m)} 

G,, = m - ~ ( x - y ) R , 1 R , f { k ” ( m ) + [ R i - R ~ - ( x - y ) 2 ] r ; ~ , 2 ( m ) }  

G,, = -md(x-y) R;frR${P(m)-[R~-R~+ ( ~ - y ) ~ ] r ; ; E ( m ) }  

G zz = 2m-f R,: R,t(P(m) + (x- y)%;; E(m)}.  

Q,.,, and G,, are singular at y = x. The singularities are subtracted and integrated 
analytically. The end points must clearly be treated as special cases. Unlike Duffy & 
Hinch, no advantages were found in according special treatment (with Gaussian 
integration) to the penultimate points (though the numerical problems here were 
such that an improved treatment would have been welcome). 

Once the velocity has been computed, the position of the interface is advanced by 
a second-order Runge-Kutta scheme. Time steps are selected automatically on the 
basis of results for the first half of the time step. At is kept sufficiently small to 
maintain R, > 0 (i =I= 1 , 2 N +  1 )  and zi-zi-l > 0. The chosen At might prove too long 
for the second half of the time step and pointed drops sometimes broke when R, or 
R, becomes negative. An isolated drop then appeared a t  the tip of the point : this 
apparent tip-streaming cannot be considered to be other than a numerical artefact. 

As in all numerical schemes, errors are present. If the defining points are displaced 
perpendicular to the interface, the errors are controlled by surface tension. However, 
there is no physical mechanism to restore drift along the interface. When the 
conductivities are non-zero, the fluid is still in motion even when the equilibrium 
drop shape has been attained, and the defining points move towards the ends of the 
drop. If the fluids are perfect dielectrics, the numerical errors will ensure that the 
computed velocities are non-zero, and there is a tendency for the points to collect a t  
the ends. At each time step the points are therefore repositioned along the 
interpolated interface in such a manner that the distance of separation is proportional 
to the local radius of curvature (within limits which prevent an absence of points at 
the drop centre). The points are therefore densest a t  the ends of the drop, where 
greater resolution is desirable. The use of higher powers of the radius of curvature, 
in order to increase still further the resolution at the tips, was found less satisfactory. 
Presumably the increased accuracy a t  the tips was gained a t  the expense of 
accuracy elsewhere. 

With a numerical scheme we can never demand that the velocities be exactly zero 
a t  equilibrium. In general the requirement was that 1u,J < u,,, (generally over 
the entire length of the drop. Merely requiring that lu(z,)l be small does not alone 
suffice, since the drop can oscillate about equilibrium. Nevertheless, this weaker 
requirement was adopted when conductivities were non-zero, since fluid velocities 
are not in general zero a t  equilibrium. Higher values of u,, were required at higher 
field strengths and aspect ratios. However, these had to be adopted with caution. If 
the drop was not in equilibrium when the applied electric field was increased, i t  was 
very easy to cause the drop to break, usually by the creation of pointed ends. It is 
unfortunate, but probably inevitable, that subjective judgement plays a role in the 
choice of an equilibrium criterion; similar problems are discussed by Rallison & 
Acrivos. 

At low field strengths the numerical results could be compared against analytic 
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FIGURE 5.  Mean horizontal velocity-defect profiles in law-of-the-wall coordinates : mechanical 

waves (case 11). 

along the wave trough (cf. Bole & Hsu 1969), thus leading to a lower mean drift 
velocity. 

The velocity-defect profiles in wall coordinates are plotted in figure 5,  together 
with the reference relationships cited previously for smooth- and rough-wall flows for 
comparison. Because the mechanically generated wave has an amplitude of about 
22 mm, the closest measuring point is at least 22 mm from the mean water level. 
Consequently, the first data points lie a t  considerably greater y+ than in Case I 
(figure 1 ) .  

The mean velocity profiles are logarithmic (figure 5 ) .  Although the slopes of the 
profiles are not 2.5 (=  1/0.4), they are practically identical to those in the high-wind- 
speed wind-wave experiments. It is reasonable, then, to conclude that the significant 
velocity scales are u* and us (as before) and that the velocity-defect distribution 
varies with - K Y .  Of course, the value of K is not equal to that usually taken by the 
von Karmhn constant (0.4) because the velocity profiles have a different slope. 
However, K is of the same order as 0.4. At u, = 1.7 and 2.5 m/s, the profiles deviate 
from the logarithmic regions as the interface is approached (i.e. small -y+).  The data 
near this region behave as if the profiles were in a viscous sublayer, but a t  a higher 
- y+ than the expected, - y+ N 11. This results from the water motion following the 
surface motion of the mechanical wave (see Cheung 1984). The defining lengthscale 
for the mean flow boundary layer remains S which defines the zone over which there 
is a substantial mean velocity gradient. The growth of the boundary layer is related, 
of course, to another lengthscale - the fetch - but that relationship is not explored 
here. 

The gradient of mean vertical velocity with depth is very much smaller than the 
gradient of the mean horizontal velocity. The mean vertical velocities (not shown) 
are within f 2 mm/s about zero for the two low-wind-speed experiments, and f 6 
mm/s a t  higher wind speeds. 

As noted above, the data sets f '  = fE + fT were constructed by phase averaging, 
but now f '  represents both the wind-generated ripple-induced ( fR)  and the turbulent 
motions ( fT) .  As an example, the uims profiles are presented in figure 6 using the same 
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FIGURE 5.  v,/u2 = 25, e1/cZ = 1. The drop shape and velocity field at equilibrium, when E*' = 0.24. 
Circulation is clockwise in the upper right-hand quadrant of the drop. The lines represent velocity 
vectors, and overlap slightly in regions of high velocity. The origins of the vectors lie on a 
rectangular grid. 

taking the limit el --f 00. Drop breakup occurs via an instability a t  the tip of the drop, 
and the shape a t  the moment of breakup is shown on figure 4. The critical field 
strength E* at breakup is 0.454. This is in good agreement with the results of Brazier- 
Smith (1971) (E* = 0.452) and Taylor (1964) (E* = 0.458). Minimum-energy 
arguments predict E* = 0.453. Just  before breakup, the equilibrium length varies 
rapidly with E*, and agreement on the predicted aspect ratio is poorer. The largest 
equilibrium aspect ratio obtained by our simulations was l / b  = 1.7.  Brazier-Smith 
obtained 1.83, minimum-energy arguments predict 1.85, and Taylor predicted 1.9. 

The minimum-energy argument predicts that hysteresis should occur when 
K = 20.8. On plotting the aspect ratio l / b  as a function of E*' (as in figure 2), our own 
simulations give deformation curves which vary continuously up to a critical value 
which lies in the range 19.6-19.7. This refines the bounds 19-20 obtained by Miksis. 
When K = 20, there is a continuous variation of aspect ratio up to  E*2 = 0.36, 
l / b  = 1.94. If the field strength is increased to E*' = 0.38, the aspect ratio increases to 
4.8. It is then possible to move along the upper branch of the deformation curve, and 
to jump back to the lower branch. On returning to the lower curve, aspect ratios were 
generally slightly higher (e.g. a t  E*' = 0.25, l / b  = 1.3 for E* increasing, 1.45 for E* 
decreasing). This difference is presumably linked with the difficulty in defining 
equilibrium and choice of u,,,. 

At K = 25 however, i t  proved impossible to follow the jump to the upper branch 
of the deformation curve. Above the critical strength E*2 = 0.31 ( l / b  = 2.3) the drop 
would lengthen, up to l / b  = 3.9. A pointed tip then developed and the numerical 
scheme broke down. Reducing the time step, or the increase in E* above the critical 
value, did not modify this behaviour. Equilibrium solutions on the upper branch of 
the deformation curve could be obtained if the drop shape was initially sufficiently 
close to equilibrium. However, the jump from the upper branch of the deformation 
curve to  the lower branch could not be followed when the field strength was reduced, 
Numerical problems were encountered at the tip of the drop. Long slender drops in an 
extensional flow will break into a series of droplets when the flow is stopped (Taylor 
1934), and i t  is quite possible that we are predicting such a breakup when the field 
is reduced. 
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FIGURE 6. al/uz = 5 ,  e1/e2 = 1 .  Equilibrium drop shapes at  E*' = 0, [0.1], 0.8. 

FIGURE 7. ul/u2 = 25, c, /e,  = 1 ,  E*e = 0.26. The drop is still growing slowly. Lines indicate 
velocity vectors, as on figure 5 .  

FIGURE 8. vJu2 = 20, eJe, = 1, E*, = 0.28. The drop is no longer extending, and is breaking 
into individual droplets. Lines indicate velocity vectors, as on figure 5 .  

Thus we have not been able to follow the hysteresis observed by Bacri & Salin. 
They estimate a ratio of permeabilities p J p 2  of order 40 in their experiments. As the 
field increased, the volume of the drop decreased in their experiments by a factor 
which might sometimes be as high as 2. The major difference between the 
experiments and the simulations is the ratio of the viscosities. I n  the experiments 
the concentrated phase forming the drop was considerably more viscous than the 
surrounding fluid. A concentrated ferrofluid might typically have a viscosity twenty 
times that of water, while pT = pg in the simulations. 

We now turn to the problem in which the conductivities of the fluids are non-zero. 
Even a t  equilibrium the fluid will be in motion, and we scale time by choosing p* = 1.  
This motion is illustrated in figure 5, which shows the drop shape and velocity field 
a t  equilibrium for the case al/a2 = 25, e1/e2 = 1, E*2 = 0.24. We must consider the 
behaviour of the drop as a function of both al/a2 and of el/e2, and the results 
presented below are summarized on figure 10. 

We first fix eJe2 = 1, constant, and consider various values of al/a2. Figure 6 
shows equilibrium shapes when al/u2 = 5, e1/e2 = 1.  The drop has not burst and 
deformation is smooth. When the field in figure 5 (al/a2 = 25, e1/e2 = 1 )  is increased 
from E*2 = 0.24 to E*2 = 0.26, the drop initially lengthens rapidly, and then attains 
the form shown in figure 7, which is not in equilibrium, although the velocity a t  
the ends is small. The drop is dividing into two blobs separated by a thin thread, 
and circulation caused by the electric field creates asymmetry in the flow a t  the 
necks where breakup will occur. This is precisely the form of breakup observed in 
figure 9 of Torza et al. This breakup is shown even more clearly in figure 8, where 

If the drop conductivity becomes very large, the electric field within the drop 
becomes small. In  particular, the tangential field, and thus the tangential stress, 
becomes small. Thus drop deformation is controlled by the normal stresses, and the 

aJa2 = 20, €Jet = 1. 
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FIGURE 9. nJu2 = 25, e,/s, = 14. Equilibrium shapes, (a )  E*2 = 0.28, (6) 0.3. Additional. 
intermediate shapes show drop deformation when E** is increased from 0.28 to 0.3. The drop tip 
nearly becomes conical. 

FIGURE 10. The ultimate behaviour of the drop, as a function of sJs2 and ul/cr2. __ , smooth 
deformation; - - - , formation of a conical tip; ......, conical tip prevented by recirculating eddies; 

, no deformation. 

ends of the drop become pointed. The limiting ratio of conductivities that  divides the 
two mechanisms lies between 28-29 when el = e2. 

When aJa, = eJe2 there is no build-up of charge a t  the interface, and the 
deformation is the same as for perfect dielectric fluids. If we hold a,/a, constant, and 
reduce el/€,, the mechanism of breakup varies from one determined by permittivity 
to one controlled by conductivity. Thus, when aJu2 = 25, el/e2 = 25, the drop 
becomes pointed, as discussed above for the case e , /e2  = 25, at = 0. When eJe2 is 
reduced to 15, the drop tip still becomes conical and the numerical simulation breaks 
down. In  figure 9, aJv2 = 25, q ' e ,  = 14. The drop tip becomes almost conical, but 
the tangential stresses caused by conductivity are sufficient to avoid a perfect cone 
followed by breakup. Thus the drop survives. Finally, reverting to figure 7 ,  we have 
el/€, = 1, with aJu2 still equal to 25. Deformation is smooth. 

In  all the examples considered above, the drop deforms into a prolate spheroid. In  
the case cr,/u, = 0.2, el/e2 = 1, circulation occurs in the reverse direction to that in 
figures 5-9. The deformation due to fluid circulation is opposite to, and stronger 
than, that  due to  the normal electric stresses, and the drop shape therefore 
approximates to  an oblate spheriod. Such oblate spheroids have been observed to 
break by folding and twisting (Allan & Mason 1962). The present numerical scheme 
is therefore not well suited to the oblate case, since we have assumed that the drop 
is symmetric and that its shape R(z) is a single-valued function of z. Numerical 
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difficulties were encountered at  a field strength E*2 = 0.32 (aspect ratio 0.85), and the 
study of the oblate case was not pursued further. 

The above results are summarized on figure 10, which shows the ultimate 
behaviour of the drop as a function of its position on the (e1/e2, ul/cr2)-plane. We 
have seen that deformation into both prolate and oblate shapes is possible. Taylor 
(1966) showed that for suitable ratios of the conductivities, permittivities and 
viscosities, the drop remains spherical. When the viscosities of the two fluids are 
eaual. this occurs when 

and this curve is also shown on figure 10. 
Torza et al. divide breakup into two classes. In the purely electric class the electric 

stresses dominate ; fluid motion is important in the case of electrohydrodynamic 
breakup. My results support this view, though my classification of any individual 
experimental result would not necessarily be the same as theirs. Thus in figure 9 of 
Torza et al. the drop breaks into two blobs joined by a thread, while in their figure 
11 tip-streaming occurred. I would clasify these as electrohydrodynamic and electric 
breakup, respectively, while Torza et al. adopted the opposite classification. 

I am grateful to Dr E. J. Hinch for supplying details of the numerical scheme of 
Duffy & Hinch, and I thank also Dr J.-C. Bacri & Dr D. Salin for stimulating 
discussions. 
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